224 research outputs found

    Nitrogen mass balance in waste stabilization ponds at the University of Dar es Salaam, Tanzania

    Get PDF
    Nitrogen mass balance in waste stabilization pond system at the University of Dar es Salaam was determined using a dynamic mathematical model in order to elucidate the biological nitrogen transformation mechanisms that are effective for removal of nitrogen in this pond system. Results show that the pond system removed 4741 g/day of nitrogen from an influent load of 8036 kg/day, which is equivalent to 59% removal efficiency. The overall dominant nitrogen removal mechanism was denitrification, which was responsible for 77.5% of the removed nitrogen. Other permanent nitrogen removal mechanisms were net loss of nitrogen to sediments and volatilization, which contributed 18.2 and 4.3% of the removed nitrogen, respectively. However, sedimentation was the major nitrogen removal mechanism in primary facultative pond, which was responsible for 73.7% of the total nitrogen removed in that pond. On the other hand, denitrification was the major nitrogen removal mechanism in secondary facultative ponds (F2 and F3) and maturation pond, M, which contributed about 95.0, 89.4 and 89.1% of the total nitrogen removed from these ponds, respectively. The major nitrogen transformation routes were mineralization and ammonia uptake in the primary facultative pond F1. In secondary facultative pond F2, nitrification and denitrification were the dominant nitrogen transformation mechanisms, while in secondary facultative pond F3 and maturation pond M, ammonia uptake was the dominant transformation route. The results obtained in this work may be used as a management tool in assessing the levels of nitrogen compounds in waste stabilization ponds and thus protect the water bodies downstream.Key words: Nitrogen dynamics, waste stabilization ponds, nitrogen removal, mathematical modeling

    Biofilter aquaponic system for nutrients removal from fresh market wastewater

    Get PDF
    Aquaponics is a significant wastewater treatment system which refers to the combination of conventional aquaculture (raising aquatic organism) with hydroponics (cultivating plants in water) in a symbiotic environment. This system has a high ability in removing nutrients compared to conventional methods because it is a natural and environmentally friendly system (aquaponics). The current chapter aimed to review the possible application of aquaponics system to treat fresh market wastewater with the intention to highlight the mechanism of phytoremediation occurs in aquaponic system. The literature revealed that aquaponic system was able to remove nutrients in terms of nitrogen and phosphorus

    A feasibility study of X-ray phase-contrast mammographic tomography at the Imaging and Medical beamline of the Australian Synchrotron

    Get PDF
    Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 μm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses

    Dark-field tomography of an attenuating object using intrinsic x-ray speckle tracking.

    Get PDF
    Purpose: We investigate how an intrinsic speckle tracking approach to speckle-based x-ray imaging is used to extract an object's effective dark-field (DF) signal, which is capable of providing object information in three dimensions. Approach: The effective DF signal was extracted using a Fokker-Planck type formalism, which models the deformations of illuminating reference beam speckles due to both coherent and diffusive scatter from the sample. Here, we assumed that (a) small-angle scattering fans at the exit surface of the sample are rotationally symmetric and (b) the object has both attenuating and refractive properties. The associated inverse problem of extracting the effective DF signal was numerically stabilized using a "weighted determinants" approach. Results: Effective DF projection images, as well as the DF tomographic reconstructions of the wood sample, are presented. DF tomography was performed using a filtered back projection reconstruction algorithm. The DF tomographic reconstructions of the wood sample provided complementary, and otherwise inaccessible, information to augment the phase contrast reconstructions, which were also computed. Conclusions: An intrinsic speckle tracking approach to speckle-based imaging can tomographically reconstruct an object's DF signal at a low sample exposure and with a simple experimental setup. The obtained DF reconstructions have an image quality comparable to alternative x-ray DF techniques

    An 11 Earth-mass, Long-period Sub-Neptune Orbiting a Sun-like Star

    Get PDF
    Although several thousands of exoplanets have now been detected and characterized, observational biases have led to a paucity of long-period, low-mass exoplanets with measured masses and a corresponding lag in our understanding of such planets. In this paper we report the mass estimation and characterization of the long-period exoplanet Kepler-538b. This planet orbits a Sun-like star (V = 11.27) with M_* = 0.892 +/- (0.051, 0.035) M_sun and R_* = 0.8717 +/- (0.0064, 0.0061) R_sun. Kepler-538b is a 2.215 +/- (0.040, 0.034) R_earth sub-Neptune with a period of P = 81.73778 +/- 0.00013 d. It is the only known planet in the system. We collected radial velocity (RV) observations with HIRES on Keck I and HARPS-N on the TNG. We characterized stellar activity by a Gaussian process with a quasi-periodic kernel applied to our RV and cross correlation function full width at half maximum (FWHM) observations. By simultaneously modeling Kepler photometry, RV, and FWHM observations, we found a semi-amplitude of K = 1.68 +/- (0.39, 0.38) m s^-1 and a planet mass of M_p = 10.6 +/- (2.5, 2.4) M_earth. Kepler-538b is the smallest planet beyond P = 50 d with an RV mass measurement. The planet likely consists of a significant fraction of ices (dominated by water ice), in addition to rocks/metals, and a small amount of gas. Sophisticated modeling techniques such as those used in this paper, combined with future spectrographs with ultra high-precision and stability will be vital for yielding more mass measurements in this poorly understood exoplanet regime. This in turn will improve our understanding of the relationship between planet composition and insolation flux and how the rocky to gaseous transition depends on planetary equilibrium temperature

    Elevated cerebrospinal fluid pressure in patients with Alzheimer's disease

    Get PDF
    BACKGROUND: Abnormalities in cerebrospinal fluid (CSF) production and turnover, seen in normal pressure hydrocephalus (NPH) and in Alzheimer's disease (AD), may be an important cause of amyloid retention in the brain and may relate the two diseases. There is a high incidence of AD pathology in patients being shunted for NPH, the AD-NPH syndrome. We now report elevated CSF pressure (CSFP), consistent with very early hydrocephalus, in a subset of AD patients enrolled in a clinical trial of chronic low-flow CSF drainage. Our objective was to determine the frequency of elevated CSFP in subjects meeting National Institutes of Neurological and Communicative Diseases and Stroke – Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA) criteria for AD, excluding those with signs of concomitant NPH. METHODS: AD subjects by NINCDS-ADRDA criteria (n = 222), were screened by history, neurological examination, and radiographic imaging to exclude those with clinical or radiographic signs of NPH. As part of this exclusion process, opening CSFP was measured supine under general anesthesia during device implantation surgery at a controlled pCO(2 )of 40 Torr (40 mmHg). RESULTS: Of the 222 AD subjects 181 had pressure measurements recorded. Seven subjects (3.9%) enrolled in the study had CSFP of 220 mmH(2)0 or greater, mean 249 ± 20 mmH(2)0 which was significantly higher than 103 ± 47 mmH(2)O for the AD-only group. AD-NPH patients were significantly younger and significantly less demented on the Mattis Dementia Rating Scale (MDRS). CONCLUSION: Of the AD subjects who were carefully screened to exclude those with clinical NPH, 4% had elevated CSFP. These subjects were presumed to have the AD-NPH syndrome and were withdrawn from the remainder of the study

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    corecore